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The Steady Magnetic Field ) ndalinal) Jlaall

7.1 BIOT-SAVART Law

The source of the steady magnetic field may be a permanent magnet, an electric field

changing linearly with time, or a direct current. We will largely ignore the permanent magnet
and save the time-varying electric field for a later discussion. Our present study will concern the

magnetic field produced by a differential dc element in free space

Biot-Savart's law states that “the magnetic field intensity dH produced at a point P by the
differential current element I dl is proportional to the product I dl and the sine of the angle
between the element and the line joining P to the element and is inversely proportional to the
square of the distance R between P and the element”.

The direction of the magnetic field intensity is normal to the plane containing the

differential filament and the line drawn from the filament to the point P as shown in Figure 7.1.

Q) dH dH

(a) (b)

Figure 7.1 the direction of gdH using (a) the right-hand rule, or (b) the right-handed screw rule.

We can have different current distributions: line current, surface current, and volume
current. If we define K as the surface current density (in A/m) and J as the volume current
density (in A/m?),

IdL X ag

= jg W Line current
K dS X ap

= jg W Surface current
Jdv X ap

H = jg W Volume current
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Consider an infinitely long straight filament carrying a direct current 1 is located along z-axis

_%Ide ag

2 i
4mR (Point 1) ‘“"

i~

Free space

SNAR

dL = dza,

R=pa,—-za,

N
|R| = 1/’02 + z2 P, (Point 2)

H_f°° I dza, o pa,—za,
= 2
~o4x(y/p? + z2) Vp?+z?
I (“ dz
H=_ p—3a¢ , (ay,xa,=ay) , (ay,xa,=0)
~*(p? +2%)2
Letz =p tanu , dz = psec?u du
u=tan '— u =tan'—=—, Uy =tan t—=—
p 2 p
s
I (2 ppsec?u du
H = 4— o 3 ag
TS (p? + p?tan? u)2z
s
I (2 ppsec’udu
H= 4— r 3 dg
S (p? + p?tan?u)2
I T I T —1T
= 4—[smu]32_n = Tp[sin— - sinT
H ! J lindrical
=——a lncyiindarica
21p ? y
I I (—ya, + xa, ] ) )
H=——a; = —( > ) in cartesian along z axis
21T p 2\ x“+y
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The finite-length current element is shown in Figure below. The magnetic field intensity H

is most easily expressed in terms of the angles al and 02, as identified in the figure. The result is

I
H = % (sina, —sina,)

/
l" for .
. ® Point 2

Example: Determine H at P (0.4, 0.3, 0) in the field of an 8 A filamentary current is directed

inward from infinity to the origin on the positive x axis, and then outward to infinity

along the y axis. As shown in Figure.

Solution:
H=H, +H, 34,
L :
H, = pr (sina, —sina;) “A "
y, '\L"z_v
O 4 (le{’.!’z(ﬂ{ 0.3, 0)
pp=03 , a;=-90 , a,=tan"'— =53.1
0.3
H, = —> (sin53.1 + sin90)a, = ——a, = =
1—471_0.3 Sin . Sin dg = - dg = - a,
. = I (si inay)
2 _47Tp2 sina, — sin a4

0.3
p,=04 , a; =90 , a, = —tan‘10—4 = —-36.9

8 -8 8
H, = 204 (sin90 + sin36.9)a, = —a =—a,

—12 8 —20
H=H1+H2 =Taz+;az =Taz
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Example: Find H at the center of a square current loop of side L is located on xy-plane?

Solution:
[ dL X ag Z
=j€ 4TTR? 4
dL = dy a, / (L2, y,0)
—L / e
R = Tax —ya, -~ -

~ /[ /

Id La,—ya X
H1=J- y:y ZXZLnyy
(& ) B+
L L
I (z 5 dy
Hy =~ 2—3 a, , (ayxay=-a,) , (a,xa,=0)
0 /7.2 >
(G) +»)
V21
1_Hz
21 2vV21
H=8H1=8*\/_ a, = i a

4l % nl ?

Example: Two identical circular current loops of radius p = 3 and | = 20A are in parallel planes,

separated on their common axis by 10 m. Find H at a point midway between the two

loops?
Solution: =20
5
H =H, + H,

%Idle ag1
1= - 2

»
»

R, =—-3a,—-5a,

IR| = /32 + 52 =34
u _JZ”I* 3d@a, o —3a,—5a, 3]
Fdo ame34 V34 4+ 342

HZ = Hl ) H = 0.90832

AR, *
dL, = pdPa, = 3dPa, /
>~
15

21 21
U 3dQa, +f —SdQ)apl = 0.453a,
0 0
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7.2 AMPERE’S Circuital Law

Ampere’s circuital law states that “the line integral of H about any closed path is exactly

equal to the direct current enclosed by that path”

fHﬂL=Qm

We choose a path, to any section of which H is either perpendicular or tangential, and
along which H is constant. The first requirement (perpendicularity or tangency) allows us to
replace the dot product of Ampere’s circuital law with the product of the scalar magnitudes,
except along that portion of the path where H is normal to the path and the dot product is zero;
the second requirement (constancy) then permits us to remove the magnetic field intensity from
the integral sign. The integration required is usually trivial and consists of finding the length of

that portion of the path to which H is parallel.

Let us again find the magnetic field intensity produced by an infinitely long filament
carrying a current 1. The filament lies on the z axis in free space, and the current flows in the

direction given by a, .

the path must be a circle of radius p, and Ampere’s circuital law becomes

fHdL=Qm

21 2
jéH.dL=f Hq,pd(Z)qu,pj dp =2n Hyp
0 0

27'[H®p=1
H, = ——
0 21T p
- I
“2mp °
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Example: A thin cylindrical conductor of radius a, infinite in length, carries a current I. Find H

at all points using Ampere's law?
Solution:

For path 1 inside cylinder

jg H.dL = Ien,
Ienc =0 o
~H=0

For path 2 outside cylinder

lone =1
21 21

fH.sz f Hg pd® =H®pf d® = 2mp Hy
0 0

27Tp HQ) =]

Hy = —

=27Tp

Example: Determine H for a solid cylindrical conductor of radius a, where the current | is

uniformly distributed over the cross section?

Solution:
forp<a

lone = In—'o2 = ﬁI
enc T[az az

2T 2T
0 0

2
27Tp H@ :%I
_Ip
® " 2ma?

forp>a , Lpe =1 , Hy = —
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Example: consider an infinitely long coaxial transmission line carrying a uniformly distributed

total current | in the center conductor and —I in the outer conductor, Find H at all

points using Ampere's law?

Solution:
forp<a
LA
enc n_az az

21 21
0 0

2

2Tl'p H@ = %I

_Ip
" 2ma?

Hy

fora<p<b

lene =1 ) H(b=%
forb<p<c

Iene =1 + I
=220

2 PP P P
By — =1 2 = P
CZ_bZ CZ_bZ

CZ _p2
27Tp H@ = m[
I CZ _pZ

Hy =— —
7 2mp 2 — b2

forc<p

Lpe=L+I, =1—-1=0 2 H=0
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Example: consider a sheet of current flowing in the positive y direction and located in the z=0

plane as shown in Figure below. Find H?

Solution:

H = Hya, + Hya, + H,a,

N
# K:Kyay —_—
\

H,=H,=0 ,
H =H,a, 2
Iene =KL

fH.dL = foax.dxax + f H.,a,.dza, = H,L+ H,L =2H,L

f H.dL = I,

2H,L =KL

In general the H for infinite sheet current is given by:
1

H=—=-K X
2t AN

Example: A current sheet, K=10a, A/m, lies in the x = 5m plane and a second sheet, K = -10a,

A/m, is at x = -5 m. Find H at all points?

Solution:

for —=5<x<5
1 /
f

Hl - EKl X aN
K=10a
1 b4
H, = ElOaZ X —a, = —ba, l/} L
1 — in E il
H, = 5~ 10a, x a, = —5a,, ; 108,
H = H, + H, = —10a, 4 a
forx <=5

1
H, = ElOaZ X —a, = —ba,

1
H, = 5 10a, X —a, = 5a,,

H=H1+H2=_Say+53y=0
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(@) An ideal solenoid of infinite length with a circular current sheet K.
(b) An N-turn solenoid of finite length d.

———~
p=a
Y
H-K,a,p<a "_7%
H=0,p>a (well inside coil)
(@) ©)
NI
H=K,a, p<a H=-—a, p<a

For the toroid shown in Figure below, it can be shown that the magnetic field intensity for

the ideal case

TP
Po %

7,

) \%f{/// '

N turns

K=K,aatp=py-a,z=0 sz—;\;ﬂ a, (well inside toroid)

H-K, 'C’Op“’ a, (inside toroid)

H=0 (outside) 5
(@) (b)
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7.3 CURL

e In rectangular coordinates, the Curl H is given by:

a, a, a,

l 0 0 0
CurH—VxH—ax 9y 0z
H, H, H,

e In cylindrical coordinates, the Curl H is given by:

a, a,
b D
CurlH=V xH=|0 d 0
dp 00 0z
H, pHy H,

10H, 0H, oH, oH, 13(pHy) 10H,
= ( - —) a,+(—=—— ag+ (- —— a,
p 0® 0z dz  dp p dp p 00

e In spherical coordinates, the Curl H is given by:

ar ag agp

r2sin@® rsinb T

CurlH=V xH=| 2 9 2
or 200 o0

H, rHyg 15sin6 Hgy

rsind

1 a(smeH@) aHg 1 1 aHr a(T‘HQ) +1 6(7‘H9) aHr
20 o0 )2 T r\sme oo~ or J* T \Tar 99 )
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Frequently useful are two properties of the curl operator:

1) The divergence of a curl is the zero scalar; . (V x A) = 0, for any vector field A.

2) The curl of a gradient is the zero vector; Vx (VA) =0

7.4 Relationship of Jand H

If the magnetic field H is known throughout a region, then the curl H will produce the current

density J for that region.
VXH=1J
This is the second of Maxwell’s four equations as they apply to non-time-varying conditions.

We may also write the third of these equations at this time; it is the point form of  E.dl = 0 or

VXE=0

Example: A long, straight conductor cross section with radius a has a magnetic field strength

__Ip . _ : :
H = a2 A0 within the conductor(p < a) and H = 21 ag for (p >a) . Find J in

both regions?

Solution:
Ip
= Jmaz e yHp =0 ,H, =0
10H, OH J0H 0H, 10(pH 10H
VXHz(— __¢> ) <_p_ >a®+<— (pHg) 1 p)az
p 00 0z 0z  dp p dp p 00
0H 10(pH
VXH=——®ap+ b Q)az
0z p 0dp
VXH i lp
1 1 I
VXH=- - a,=—a,
p 2ma? ma?
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Example: Calculate the curl of H in Cartesian coordinates due to a current filament along the z

axis with current I in the a, direction?

A
Solution: |
The magnetic field intensity due to a current filament is: Rl LT Tl
I I (—ya, + xa
= gt = o (2t 22)
21p 2\ x“+y
a, a, a, a, a, a,
l 9 a8 9 9 g g
CurH—VxH—ax 7 0| a; axy dz| =0
H, H, H,

x2 _|_y2 x2 +y2

Example: A cylindrical conductor of radius 10 m has an internal magnetic field

2
H=4.77 X 104(§ — £ )ag A/m, what is the total current in the conductor?

3x10~2
Solution:
J=VXH
p p?
H¢=4.77X104<§—W> 'Hp:O 'HZ:0
=0 x H (1 0H, %> . (% B (’)HZ> . <16(pH¢) B laHp> .
pap adz/)P \Naz 9p)® \p ap poo/*
oH 19(pHy)
J=V><H=——®ap+— Qaz
0z p Jdp
10 2 3
J=Vx H = -—| 477 x 10* p——p—_z a,
paop 2 3x10
1 2
J=VX H =477 x 10* - p—p—_2 az=4.77x104(1—%)az
p 1x10 1x10

2T 0.01 p
I = J.dS = 477 x 10* (1 = ————) . pdpd
L jo jo 8 ( 1x 10—2) pdpds

0.01 p2
I=4.77><104*2nf p—-———|dp=54
0 1x10
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7.5 Stokes' Theorem

Consider an open surface S whose boundary is a closed curve C. Stokes' theorem states
that the integral of the tangential component of a vector field F around C is equal to the integral

of the normal component of curl F over S:

_cfH.dL=j (V x H).dS
S

Example: Consider the portion of a sphere shown in Figure below. The surface is specified by
r=4,0<6<01n, 0<@ <03m.Ifthefield H = 6rsin®a, + 18r sinf cos® ay,
evaluate each side of Stokes’ theorem?

Solution:

«Olz
r=4 ,-"f
fH.dL:j (V x H).dS ;)
The left side is: L |/

%H.dL

dL = dra, + rdfag + rsinf d@ a,

% H.dL = j(6r sin@a, + 18r sin6 cos @ ay).(dra, + rdfag + rsinf dP ay)

jLH.dL=j6rsin(Z) dr+f18r2 sin? @ cos @ d@

0.3
f H.dL = 18r? sin? Hf cos@dp = 18(4)? sin?(0.1m) sin 0.3 = 22.2 A
0

The right side is:

f (VX H).dS
S
U H = 1 (6(sin9 Hp) aH9> a 1( 1 0H, 6(rH¢)> 2y +%<6(TH9) _ a(m))a@

T rsind 96 EY:; r\sin6 00 or or 96
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U H = 1 9(18r sin? @ cos @) N 1/ 1 9(6rsin®) 9(1872 sinb cos®)
~ rsin6 20 ar T \sine~ ap or 46
N 1/ a(6rsin@®)
r a6 A

1 1
VX H=———(36r sinf cos 6 cos (Z))ar+—( 61 cos @ — 367 sin @ cos @) ay
rsinf r

sin@

dS =r?sin6d6 do a,

f (V x H).dS =
S

61 cos @ — 367 sin @ cos Q)) a9> .r%2sinf d6 do a,

1 1/ 1
f ( —— (367 sin 6 cos 6 cos (Z))ar+—( :
s \rsin6 e

0.3 0.171'7.2 sin 0
f (VxH).dS=f f —— (367 sin 8 cos O cos @) dO dP
e @ o Tsinf

03m (0.1m
J (VX H).dS = 361‘2] j sin 8 cos 8 cos @ d6 d®
5 0 0

sin? 0

0.1m
(VX H).dS = 36(4)? l l [sin ®]8.3n
0

j (VX H).dS =222 A
S

The left side =the right side
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7.6 Magnetic Flux and Magnetic Flux Density (rushlizall 2.8l

Like D, the magnetic field strength H depends only on (moving) charges and is
independent of the medium. The force field associated with H is the magnetic flux density B,

which is given by

B=uH

Where permeability u = u, U,
U, =4mrx 1077 H/m

The relative permeability of the medium, is a pure number very near to unity, except for a
small group of ferromagnetic materials

Where B is measured in weber per square meter (Wh/m?),or in a newer unit adopted in the
International System of Units, tesla (T). An older unit that is often used for magnetic flux density
is the gauss (G), here 1 T or 1Wb/m2 is the same as 10, 000 G

Let us represent magnetic flux by ® and define @ as the flux passing through any

designated area,
o = j B.dS Wb
S

The sign on @ may be positive or negative depending upon the choice of the surface

normal in dS. The unit of magnetic flux is the weber, Wb.

The magnetic flux lines are closed and do not terminate on a “magnetic charge.” For this

reason Gauss’s law for the magnetic field is

ng.dS=0

and application of the divergence theorem shows us that
V.B=0
Equation (above) is the last of Maxwell’s four equations as they apply to static electric fields and

steady magnetic fields
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Collecting these equations, we then have for static electric fields and steady magnetic fields:
A dpadalinall g Al jgSh claall ) gusSle Y alaa

V.D =p,
VXE=0
VXH=]
V.B=0

The corresponding set of four integral equations that apply to static electric fields and steady

magnetic fields is

%Ds.d5=f prdv
vol
ng.szo
ng.szl =fJ.dS

%B.d5=0

Example: Find the flux crossing the portion of the plane shown in figure below defined by
0.01 < p<0.05 mand 0 <z < 2m. A current filament of 2.5 A along the z axis is in

the a, direction? ,

Solution:
Cb=j B.dsS
S
B=uH
I ul
H= , B=-—
anaw 27Tpa®
dS = dp dzag
® f M o dpd '
= —ag.dpdza
. 2mp® )
0.05 2ul ul  0.05
—d dz =—[np]3% =—In——=1.61 uWh
f fom 2mp 2 I Ploot = T-Ingro a
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Example: A solid conductor of circular cross section. If the radius a = 1 mm, the conductor axis
lies on the z axis, and the total current in the a, direction is 20 A, find: (a) Hy at
p=0.5mm; (b) By at p = 0.8 mm; (c) the total magnetic flux per unit length inside the
conductor; (d) the total flux for p < 0.5 mm; (e) the total magnetic flux outside the
conductor.?

Solution:

(a) Hat p = 0.5mm

ng. dL = I,
2 2
p (0.5)
Ienczlﬁ=20* 12 =54

21

21
0 0

2nrpHy =5

Hy =— > —15924
® = 27 05x10-3 /iR

(b) Bat p =0.8mm
B = uH
Hatp=08mm

p? 0.8)?
Ienc=1i=20*( )

— o =1284

oo 12.8
® T 27 08x%x1073
12.8

B=yu—"" _32mT
K or08x 103 >2m
(c)

CD=f B.dS
s

B inside = u H inside

H inside
2

p

lene = IE

Ip
- 2ma? 40
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_ Mp
2ma?

dS = dp dzay

~ ~ L 0001 )y,
®=| B.dS= > ag-dp dzag
S 0o Jo 2ma

0.001
2ma? 2 o

u*20 i (0.001)2
= *
27(0.001)?2 2

g

= 2L uWb

)

(d) Total flux for p < 0.5 mm
Ip

L 0.005#
o= [ Bas=[ [ L
S o Jo 2ma

u*20 0 (0.005)2
= *
21(0.001)2 2

ag.dp dzagy

= 0.5L uWbh

(e) the total magnetic flux outside the conductor

=N
I ul
H=—— , B =——
27rpa‘zj 27Tpa®
® des fom“I T
= . = - ——dg.dp dzag
S 0o J1 2mp

wul o _ M

= 00

O
L
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7.7 The Vector Magnetic Potentials (A) daliall publial) agal)

This vector field is one which is extremely useful in studying radiation from antennas as
well as radiation leakage from transmission lines, waveguides, and microwave ovens. The vector
magnetic potential may be used in regions where the current density is zero or nonzero.

Our choice of a vector magnetic potential is indicated by noting that

V.B=0
The divergence of the curl of any vector field is zero. Therefore, we select

B=VXxA

Where A signifies a vector magnetic potential, and we automatically satisfy the condition that

the magnetic flux density shall have zero divergence, the unit of A is Wb/m. The H field is

1
H=-VXA
U

The vector magnetic potential A can be determined from the known currents in the region of
interest. For the three standard current configurations the expressions are as follows.

e Current filament

_ [uldL
| 4nR

e Sheet current:

K dS
A=f a
s 41tR

e Volume current:

Jdv
A=f a
vy 4mR

Here, R is the distance from the current element to the point at which the vector magnetic

potential is being calculated.
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Example: Obtain the vector magnetic potential A in the region surrounding an infinitely long,

straight, filamentary current?

10(pAg) 104,

Solution:
I ul
H=—— o« B=——
2mp 4o ’ 27p 40
VXA=B
104, O0A 0A, 0A
(L2 %), (% Ohr),
p o9 Oz dz dp p 0p
04, 04, o
dz dp 40 = 2mp ©
04, ul
dp 2mp
[ u o
Z_,f2np dp_Zn Inp+c
let A, =0atp=pg
Kl po
A, =—In—
Zo2m p

p 00

)a. =

Example: Let the vector magnetic potential A = (3y — z)ax + 2xzay Wb/m in a certain region of

free space.(a) Show that V - A = 0. (b) At P(2,-1, 3), find A, B, H, and J?

0 0
=£(3y = z)+@(2xz) =0

A at the point P = (3 * (—1) — 3)a, + 2 x 2 * 3a,, = —6a, + 12a,,

Solution:
04, 04, 0A,
V.A=—=Z=+ % i
a, a,
. 4 Jd 0
=Vxas= o oy
Ay A,

aZ
0

dz
A,

a, a,
d d
B ox dy

By —2) (2xz)

B = —2xa, —a, + (2z — 3)a,

B at the point P is:
B = —4a, —a, + 3a,

B —2xa,—a,+ (2z—3)a,

u H

114
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a, a, a,
P SO | I A
SYXHEIVXE =% oy 0z |7
—2x -1 (2z-3)
2 2 o
[—(22—3)——( Dlac+ [—(22—3)+—(1)]ay+[—(—1)——(—2X)]az=0
0z 0x dy

Example: Planar current sheets of K = 30a, A/m and —30a, A/m are located in free space at
x = 0.2 and x = —0.2, respectively. For the region —0.2 < x < 0.2 (a) find H; (b) find B;
(c) obtain an expression for A if A=0at (0.1, 0.5, 0.4)?

Solution:

for —5<x<5

N

/

1
Hl - EKl X aN t
1 . K 30a,
H; = EBOaZ X —a, = —15a, l/
1 —| -02 il : ¥
H, = 5~ 30a, X a, = —15a, : [® 0.2
k=-30a,
H=H1+H2=_303y ‘
B = uH = —30ya, = —1207a, I L
VXA=B
a, a, a
ad o0 0 12
ax oy oz| '
A, A, A
04, aA 0
9z  0x ey
04, _ 120
ox &

A, =120mx + C
0=120n(0.1)+C ,~C=—-121

A, = 12r(10x — 1)
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Example: Assume that A = 50p%a, Wh/m in a certain region of free space. (a) Find H and B.

(b) Find J. (c) Use J to find the total current crossing the surface 0 <p <1 ,
0<@P<2mandz=07?

Solution:

104 04 04 04 10(pA 104
z (D) , ( p Z>a®+<_ (p (D)_ P)az

(“)B:VXA:(EM—E 9z op > op 500

104, 94,

0
=230 a, — ﬁaqj = —%(SOpZ)aQ = —100pay

B —100pay

u i

10H, 0H, 0H, oH 10(pHy) 10H
(- (222,

(b)J:VXH:<p6(Z) 0z 9z dp p dp p 09

0 10 (oHy) 10 ( —100,0) —200 4/m?
papp @)%z papp 7 z 7 z

(©)

I jJ ds jzn =2 dp = 220
0 o M u
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Homework

Q1. Evaluate both sides of Stokes’ theorem for the field H = 6xyax—3y2ay A/m and the

rectangular path around the region, 2 <x <5, -1 <y <1,z=10.7? Ans:-126
Q,: Given A = —p?/4 a, wb/m. Find the total magnetic flux crossing the surface @ = m/2,
1<p<2and0<z<5. Ans: 3.75wb

Qs: Find H on the axis of a circular current loop of radius a. Specialize the result to the center of
the loop.

Ans: ath=0, H = LaZ
2a

idl

Qs: An infinite filament on the z axis carries 20 mA in the a, direction. Three uniform
cylindrical current sheets are also present: 400 mA/m at p = 1 cm, =250 mA/m at p = 2

cm, and =300 mA/m at p = 3 cm. Calculate Hy at p = 0.5, 1.5, 2.5, and 3.5 cm

Ans: 2 A/m, 933 mA/m, 360 mA/m, 0

Qs: A current filament on the z axis carries a current of 7 mA in the a, direction, and current
sheets of 0.5 a, A/m and -0.2 a, A/m are located at p= 1 cm and p = 0.5 cm, respectively.

Calculate H at: (&) p = 0.5 cm; (b) p = 1.5 cm; (c) p = 4 cm. (d) What current sheet
should be located at p = 4 cm so that H = 0 for all p > 4 cm?

Ans: 23 x 10 a4, 0.34a,4,0.13 a,
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